• Toán học
    • Toán 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
TÀI LIỆU RẺ
TÀI LIỆU RẺ

0909090

  • Toán học
    • Toán 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
Trang chủ
Toán học
Khảo sát hàm số

Tìm m để hàm số nghịch biến trên khoảng và bài tập

21/01/2019 Nguyễn Tấn Linh Khảo sát hàm số 0 comments

Tóm tắt tài liệu

  • Lý thuyết tìm m để hàm số nghịch biến trên khoảng
  • Chú ý về việc xét dấu
  • Các bước cơ bản để giải bài toán tìm giá trị của tham số để hàm số đơn điệu trên một khoảng xác định
  • Một số bài tập cơ bản

Khảo sát hàm số là một trong những chủ đề có khá nhiều dạng toán con. Một trong những dạng toán khá phức tạp đó là dạng toán tìm m để hàm số nghịch biến trên khoảng. Tài liệu dưới đây sẽ giúp các em nắm vững hơn về kiến thức cũng như làm quen với một số bài tập có lời giải chi tiết. Chúng ta hãy cùng tìm hiểu nhé!

TẢI XUỐNG ↓

Lý thuyết tìm m để hàm số nghịch biến trên khoảng

Cho hàm số y= f (x, m) với m là tham số xác định trên một khoảng I
a. Hàm số đồng biến trên và chỉ xảy ra tại hữu hạn điểm.
b. Hàm số nghịch biến trên và chỉ xảy ra tại hữu hạn điểm.

Chú ý về việc xét dấu

Để xét dấu của ta thường sử dụng phương pháp hàm số hay định lý về dấu của tam thức bậc hai như sau:
Cho tam thức bậc hai:
a. Nếu thì luôn cùng dấu với
b. Nếu thì luôn cùng dấu với (trừ ).
c. Nếu thì phương trình luôn có hai nghiệm phân biệt, khi đó dấu của trong khoảng hai nghiệm thì khác dấu với hệ số, ngoài khoảng hai nghiệm thì cùng dấu với hệ số.

Các bước cơ bản để giải bài toán tìm giá trị của tham số để hàm số đơn điệu trên một khoảng xác định

+ Bước 1: Tìm miền xác định.

+ Bước 2: Tìm đạo hàm.

+ Bước 3: Áp dụng lý thuyết vửa nhắc ở trên

+ Bước 4: Thực hiện tính toán chính xác và đưa ra đáp án.

Một số bài tập cơ bản

tìm m để hàm số nghịch biến trên khoảng

Vậy là qua một số bài tập trên chúng ta đã biết cách tìm m để hàm số nghịch biến cũng như đồng biến trên một khoảng xác định. 2 dạng toán này còn được gọi chung là dạng toán tìm m để hàm số đơn điệu trên một khoảng. Mong rằng với tài liệu nhỏ trên có thể giúp các bạn làm chủ được chuyên đề này.

Previous article Phương pháp xét tính chẵn lẻ của hàm số
Next article Trắc nghiệm lượng giác lớp 10 có lời giải chi tiết
Nguyễn Tấn Linh

Nguyễn Tấn Linh

Giáo Viên

"Website được tạo ra với mục đích chia sẻ tài liệu các môn học, phục vụ cho các em học sinh, giáo viên và phụ huynh học sinh trong quá trình học tập, giảng dạy. Mang sứ mệnh tạo nên một thư viện tài liệu đầy đủ nhất, có ích nhất và hoàn toàn miễn phí. +) Các tài liệu theo chuyên đề +) Các đề thi của các trường THPT, THCS trên cả nước +) Các giáo án tiêu biểu của các thầy cô +) Các tin tức liên quan đến các kì thi chuyển cấp, thi đại học. +) Tra cứu điểm thi THPT quốc gia +) Tra cứu điểm thi vào lớp 10, thi chuyển cấp"

Bài Viết Liên Quan
Qui tắc tìm cực trị của hàm số hay nhất

Qui tắc tìm cực trị của hàm số hay nhất

06/11/2018
Khảo sát và vẽ đồ thị hàm số bậc 3 nhanh nhất

Khảo sát và vẽ đồ thị hàm số bậc 3 nhanh nhất

06/11/2018
Các dạng đồ thị hàm số bậc 3 - Nhận diện đồ thị hàm số

Các dạng đồ thị hàm số bậc 3 - Nhận diện đồ thị hàm số

05/11/2018
Chuyên Đề
  • Toán học
    • Toán 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12

Tài Liệu Rẻ - Kho Tài Liệu Luyện Thi Đại Học Lớp 10 Miễn Phí

  • DMCA.com Protection Status

CƠ QUAN CHỦ QUẢN

Công Ty TNHH Giải Pháp TMĐT Đại Nguyễn

MST: 0314376934

Địa chỉ : 1446-1448, Đường 3/2, Phường 2, Quận 11, Thành phố Hồ Chí Minh.

Chịu trách nhiệm nội dung: Nguyễn Tấn Tài

VỀ TÀI LIỆU RẺ

Giới thiệu

Điều khoản chung

Chính sách bảo mật

Tuyển dụng

DÀNH CHO ĐỐI TÁC

Hotline : 0933.052.363

Email : info.dainguyengroup@gmail.com

HỖ TRỢ KHÁCH HÀNG

Đường dây nóng : 0933.052.363

Email tòa soạn : info.dainguyengroup@gmail.com

Phiên bản @copy; 2019. Bản quyền nội dung thuộc về Tài Liệu Rẻ