Tóm tắt tài liệu
Khảo sát hàm số là một trong những chủ đề có khá nhiều dạng toán con. Một trong những dạng toán khá phức tạp đó là dạng toán tìm m để hàm số nghịch biến trên khoảng. Tài liệu dưới đây sẽ giúp các em nắm vững hơn về kiến thức cũng như làm quen với một số bài tập có lời giải chi tiết. Chúng ta hãy cùng tìm hiểu nhé!
TẢI XUỐNG ↓
Lý thuyết tìm m để hàm số nghịch biến trên khoảng
Cho hàm số y= f (x, m) với m là tham số xác định trên một khoảng I
a. Hàm số đồng biến trên và chỉ xảy ra tại hữu hạn điểm.
b. Hàm số nghịch biến trên và chỉ xảy ra tại hữu hạn điểm.
Chú ý về việc xét dấu
Để xét dấu của ta thường sử dụng phương pháp hàm số hay định lý về dấu của tam thức bậc hai như sau:
Cho tam thức bậc hai:
a. Nếu thì luôn cùng dấu với
b. Nếu thì luôn cùng dấu với (trừ ).
c. Nếu thì phương trình luôn có hai nghiệm phân biệt, khi đó dấu của trong khoảng hai nghiệm thì khác dấu với hệ số, ngoài khoảng hai nghiệm thì cùng dấu với hệ số.
Các bước cơ bản để giải bài toán tìm giá trị của tham số để hàm số đơn điệu trên một khoảng xác định
+ Bước 1: Tìm miền xác định.
+ Bước 2: Tìm đạo hàm.
+ Bước 3: Áp dụng lý thuyết vửa nhắc ở trên
+ Bước 4: Thực hiện tính toán chính xác và đưa ra đáp án.
Một số bài tập cơ bản
Vậy là qua một số bài tập trên chúng ta đã biết cách tìm m để hàm số nghịch biến cũng như đồng biến trên một khoảng xác định. 2 dạng toán này còn được gọi chung là dạng toán tìm m để hàm số đơn điệu trên một khoảng. Mong rằng với tài liệu nhỏ trên có thể giúp các bạn làm chủ được chuyên đề này.
Leave a Reply