• Toán học
    • Toán 10
      • Hàm số lớp 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
    • Động học chất điểm
    • Động lực học chất điểm
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
  • Toán đại số
    • Khảo sát hàm số
    • Phương trình và hệ phương trình
    • ĐẠO HÀM
    • Hàm số bậc 3
    • Cực trị hàm số
    • Bất đẳng thức và bất phương trình
    • Dãy số – Cấp số cộng – cấp số nhân
    • Mệnh đề tập hợp
    • Giới hạn
    • Tổ hợp xác suất
  • Hình học
    • Cung và góc lượng giác – công thức lượng giác
    • Véc tơ
    • Tích vô hướng của hai vectơ và ứng dụng
    • Phép dời hình và phép đồng dạng trong mặt phẳng
    • Hình học không gian
    • Tọa độ trong mặt phẳng
  • Bài học toán có video
  • Tiếng anh
TÀI LIỆU RẺ
TÀI LIỆU RẺ

056 3753648

  • Toán học
    • Toán 10
      • Hàm số lớp 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
    • Động học chất điểm
    • Động lực học chất điểm
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
  • Toán đại số
    • Khảo sát hàm số
    • Phương trình và hệ phương trình
    • ĐẠO HÀM
    • Hàm số bậc 3
    • Cực trị hàm số
    • Bất đẳng thức và bất phương trình
    • Dãy số – Cấp số cộng – cấp số nhân
    • Mệnh đề tập hợp
    • Giới hạn
    • Tổ hợp xác suất
  • Hình học
    • Cung và góc lượng giác – công thức lượng giác
    • Véc tơ
    • Tích vô hướng của hai vectơ và ứng dụng
    • Phép dời hình và phép đồng dạng trong mặt phẳng
    • Hình học không gian
    • Tọa độ trong mặt phẳng
  • Bài học toán có video
  • Tiếng anh

Trang chủ » Toán học » Phép dời hình và phép đồng dạng trong mặt phẳng » Phép đối xứng trục và đối xưng tâm cực hay

Phép đối xứng trục và đối xưng tâm cực hay

31/12/2018 Nguyễn Tấn Linh Phép dời hình và phép đồng dạng trong mặt phẳng, TOÁN 11, Định nghĩa 0 comments
Phép đối xứng trục và đối xưng tâm cực hay

Tóm tắt tài liệu

  • A. PHÉP ĐỐI XỨNG TÂM
    • 1. Định nghĩa
    • 2. Biểu thức tọa độ
    • 3. Tính chất của phép đối xứng trục
    • 4. Các dạng toán thường gặp
  • B. PHÉP ĐỐI XỨNG TÂM
    • 1. Định nghĩa
    • 2. Biểu thức tọa độ
    • 3. Tính chất phép đối xứng tâm
    • 4. Các dạng toán thường gặp
  • C. BÀI TẬP PHÉP ĐỐI XỨNG TRỤC – PHÉP ĐỐI XỨNG TÂM
  • Xem thêm video
      • video trên Thầy Linh dạy toán
      • video trên Trung tâm giáo dục Tam Nguyên

Phép đối xứng trục được áp dụng rộng rãi trong các bài toán về phương pháp tọa độ trong mặt phẳng cùng với phép đối xứng tâm. Tài liệu dưới đây sẽ giải đáp hầu hết các thắc mắc về lý thuyết cũng như một số dạng bài tập mà các em sẽ gặp ở chủ đề này. Để hiểu rõ hơn về phép đối xứng trục cũng như đối xứng tâm, các em cần nắm rõ công thức và phân biệt một cách rõ ràng hai loại phép biến hình trên.

TẢI XUỐNG ↓

A. PHÉP ĐỐI XỨNG TÂM

1. Định nghĩa

2. Biểu thức tọa độ

3. Tính chất của phép đối xứng trục

  • Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kỳ
  • Biến 3 điểm thẳng hàng thành 3 điểm thẳng hàng và không thay đổi thứ tự của chúng
  • Phép đối xứng trục d biến đường thẳng thành đường thẳng
  • Biến đa giác thành đa giác bằng đa giác đã cho
  • Biến đường tròn thành đường tròn có bán kính bằng bán kính đường tròn đã cho (khi đó ta chỉ cần xác định ảnh của tâm)
  • Đường thẳng d là trục đối xứng của hình (H) nếu phép đối xứng trục d biến (H) thành chính nó.

4. Các dạng toán thường gặp

  • Cho điểm M(x0, y0) không thuộc đường thẳng d: Ax + By + C = 0. Tìm tọa độ M’ là ảnh của M qua phép đối xứng trục d
  • Xác định phương trình ảnh (H’) của đường (H) qua phép đối xứng trục d
  • Chứng minh các tính chất hình học và tính các yếu tố trong một hình
  • Tìm tập hợp tất cả các điểm M thỏa mãn một tính chất nào đó cho trước (quỹ tích)
  • Dựng hình

B. PHÉP ĐỐI XỨNG TÂM

1. Định nghĩa

2. Biểu thức tọa độ

3. Tính chất phép đối xứng tâm

Phép đối xứng tâm bảo toàn khoảng cách giữa hai điểm bất kỳ

Phép đối xứng tâm biến 3 điểm thẳng hàng thành 3 điểm thẳng hàng và không thay đổi thứ tự của chúng

Phép đối xứng tâm I biến đường thẳng thành đường thẳng song song hoặc trùng với nó.

Biến đa giác thành đa giác bằng đa giác đã cho

Biến đường tròn thành đường tròn có bán kính bằng bán kính đường tròn đã cho (khi đó ta chỉ cần xác định ảnh của tâm đường tròn gốc)

Điểm I là tâm đối xứng của hình (H) nếu phép đối xứng tâm I biến (H)
thành chính nó.

4. Các dạng toán thường gặp

  • Cho điểm điểm I(a ; b) và hình (H) có phương trình f (x, y) = 0 tìm phương trình ảnh (H’) của hình (H) qua phép đối xứng tâm I
  • Chứng minh các tính chất hình học và tính các yếu tố trong một hình
  • Tìm tập hợp tất cả các điểm M thỏa mãn một tính chất nào đó cho trước (quỹ tích)
  • Dựng hình
  • Chứng tỏ một phép biến hình f là phép đối xứng tâm

C. BÀI TẬP PHÉP ĐỐI XỨNG TRỤC – PHÉP ĐỐI XỨNG TÂM

Bài tập phép đối xứng trục phep doi xung truc Page 2 phep doi xung truc Page 3 phep doi xung truc Page 4phep doi xung truc Page 5 phep doi xung truc Page 6

Vậy là chúng ta vừa tìm hiểu khá kĩ những vấn đề lý thuyết cũng như bài tập của phép đối xứng trục cũng như phép đối xứng tâm. Để cải thiện điểm số cũng như phương pháp học tập thì các em cần phải thực hành càng nhiều càng tốt các bài tập có trong tài liệu. Điều quan trọng vẫn là siêng năng, có phương pháp. Chúc các em học tốt chuyên đề này nhé.

Xem thêm video

video trên Thầy Linh dạy toán

video trên Trung tâm giáo dục Tam Nguyên

Previous article Bài tập phép tịnh tiến có lời giải chi tiết - Hình học 11
Next article Phép quay và phép vị tự lớp 11 - Bài tập có lời giải
Nguyễn Tấn Linh

Nguyễn Tấn Linh

Giáo Viên

"Website được tạo ra với mục đích chia sẻ tài liệu các môn học, phục vụ cho các em học sinh, giáo viên và phụ huynh học sinh trong quá trình học tập, giảng dạy. Mang sứ mệnh tạo nên một thư viện tài liệu đầy đủ nhất, có ích nhất và hoàn toàn miễn phí. +) Các tài liệu theo chuyên đề +) Các đề thi của các trường THPT, THCS trên cả nước +) Các giáo án tiêu biểu của các thầy cô +) Các tin tức liên quan đến các kì thi chuyển cấp, thi đại học. +) Tra cứu điểm thi THPT quốc gia +) Tra cứu điểm thi vào lớp 10, thi chuyển cấp"

Bài Viết Liên Quan
Lý thuyết và phương pháp giải bài tập hàm số bậc hai lớp 10

Lý thuyết và phương pháp giải bài tập hàm số bậc hai lớp 10

12/05/2019
Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số lượng giác

Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số lượng giác

16/04/2019
Đề kiểm tra học kì 1 toán 11

Đề kiểm tra học kì 1 toán 11

27/03/2019
Chuyên Đề
  • Toán học
    • Toán 10
      • Hàm số lớp 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
    • Động học chất điểm
    • Động lực học chất điểm
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
  • Toán đại số
    • Khảo sát hàm số
    • Phương trình và hệ phương trình
    • ĐẠO HÀM
    • Hàm số bậc 3
    • Cực trị hàm số
    • Bất đẳng thức và bất phương trình
    • Dãy số – Cấp số cộng – cấp số nhân
    • Mệnh đề tập hợp
    • Giới hạn
    • Tổ hợp xác suất
  • Hình học
    • Cung và góc lượng giác – công thức lượng giác
    • Véc tơ
    • Tích vô hướng của hai vectơ và ứng dụng
    • Phép dời hình và phép đồng dạng trong mặt phẳng
    • Hình học không gian
    • Tọa độ trong mặt phẳng
  • Bài học toán có video
  • Tiếng anh

Tài Liệu Rẻ - Kho Tài Liệu Luyện Thi Đại Học Lớp 10 Miễn Phí

  • DMCA.com Protection Status

CƠ QUAN CHỦ QUẢN

Công Ty TNHH Giải Pháp TMĐT Đại Nguyễn

MST: 0314376934

Địa chỉ : 1446-1448, Đường 3/2, Phường 2, Quận 11, Thành phố Hồ Chí Minh.

Chịu trách nhiệm nội dung: Nguyễn Tấn Tài

VỀ TÀI LIỆU RẺ

Giới thiệu

Điều khoản chung

Chính sách bảo mật

Tuyển dụng

DÀNH CHO ĐỐI TÁC

Hotline : 0933.052.363

Email : info.dainguyengroup@gmail.com

HỖ TRỢ KHÁCH HÀNG

Đường dây nóng : 0933.052.363

Email tòa soạn : info.dainguyengroup@gmail.com

Phiên bản @copy; 2019. Bản quyền nội dung thuộc về Tài Liệu Rẻ

  • diva spa 056.3753648
  • chat fb thẩm mỹ diva Chat FB