• Toán học
    • Toán 10
      • Hàm số lớp 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
    • Động học chất điểm
    • Động lực học chất điểm
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
  • Toán đại số
    • Khảo sát hàm số
    • Phương trình và hệ phương trình
    • ĐẠO HÀM
    • Hàm số bậc 3
    • Cực trị hàm số
    • Bất đẳng thức và bất phương trình
    • Dãy số – Cấp số cộng – cấp số nhân
    • Mệnh đề tập hợp
    • Giới hạn
    • Tổ hợp xác suất
  • Hình học
    • Cung và góc lượng giác – công thức lượng giác
    • Véc tơ
    • Tích vô hướng của hai vectơ và ứng dụng
    • Phép dời hình và phép đồng dạng trong mặt phẳng
    • Hình học không gian
    • Tọa độ trong mặt phẳng
  • Bài học toán có video
  • Tiếng anh
TÀI LIỆU RẺ
TÀI LIỆU RẺ

056 3753648

  • Toán học
    • Toán 10
      • Hàm số lớp 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
    • Động học chất điểm
    • Động lực học chất điểm
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
  • Toán đại số
    • Khảo sát hàm số
    • Phương trình và hệ phương trình
    • ĐẠO HÀM
    • Hàm số bậc 3
    • Cực trị hàm số
    • Bất đẳng thức và bất phương trình
    • Dãy số – Cấp số cộng – cấp số nhân
    • Mệnh đề tập hợp
    • Giới hạn
    • Tổ hợp xác suất
  • Hình học
    • Cung và góc lượng giác – công thức lượng giác
    • Véc tơ
    • Tích vô hướng của hai vectơ và ứng dụng
    • Phép dời hình và phép đồng dạng trong mặt phẳng
    • Hình học không gian
    • Tọa độ trong mặt phẳng
  • Bài học toán có video
  • Tiếng anh

Trang chủ » Toán học » Giới hạn » Giới hạn hàm số lượng giác và bài tập ứng dụng

Giới hạn hàm số lượng giác và bài tập ứng dụng

13/11/2018 Nguyễn Tấn Linh Giới hạn, TOÁN 11, Định nghĩa 0 comments
Giới hạn hàm số lượng giác và bài tập ứng dụng

Tóm tắt tài liệu

  • 1. Tìm giới hạn của hàm số khi \[x\to 0\] và sử dụng định lí \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin x}{x}=1\]
    • Áp dụng vào bài toán tính giới hạn hàm số lượng giác sau khi đã biến đổi công thức về dạng chuẩn của định lí 1:
  • 2. Tìm giới hạn của hàm số lượng giác khi \[x\to a\]. Dùng phép biến đổi lượng giác hoặc đổi biến số \[t=x-a\] để đưa về việc tìm giới hạn hàm số khi \[t\to 0\]
  • 3. Bài tập đề nghị tính giới hạn hàm số lượng giác
  • Xem thêm video
      • video trên Thầy Linh dạy toán
      • video trên Trung tâm giáo dục Tam Nguyên

gioi han ham so luong giac 1

1. Tìm giới hạn của hàm số khi \[x\to 0\] và sử dụng định lí \[\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin x}{x}=1\]

Để tính giới hạn hàm số lượng giác theo định lí 1, chúng ta cần phải nắm vững một số công thức lượng giác sau đây:

gioi han ham so luong giac 1 gioi han ham so luong giac 2 gioi han ham so luong giac 3

Áp dụng vào bài toán tính giới hạn hàm số lượng giác sau khi đã biến đổi công thức về dạng chuẩn của định lí 1:

gioi han ham so luong giac 4

2. Tìm giới hạn của hàm số lượng giác khi \[x\to a\]. Dùng phép biến đổi lượng giác hoặc đổi biến số \[t=x-a\] để đưa về việc tìm giới hạn hàm số khi \[t\to 0\]

gioi han ham so luong giac 5

3. Bài tập đề nghị tính giới hạn hàm số lượng giác

gioi han ham so luong giac 6

gioi han ham so luong giac 7

Để tải tài liệu trên, các em có thể truy cập tại đây:

CLICK VÀO ĐÂY ĐỂ TẢI TÀI LIỆU

Xem thêm video

video trên Thầy Linh dạy toán

Tìm nghiệm âm lớn nhất, nghiêm dương nhỏ nhất của phương trình lượng giác – Thầy Nguyễn Tấn Linh

video trên Trung tâm giáo dục Tam Nguyên

Từ khóa: giới hạn hàm số lượng giác, lượng giác, giới hạn, bài tập, trắc nghiệm.

Chuyên mục: Giới hạn hàm số

  • Tags
  • Giới hạn hàm số
Previous article Công thức tính giới hạn hàm số
Next article #5 tài liệu hay nhất về bài tập giới hạn hàm số dãy số
Nguyễn Tấn Linh

Nguyễn Tấn Linh

Giáo Viên

"Website được tạo ra với mục đích chia sẻ tài liệu các môn học, phục vụ cho các em học sinh, giáo viên và phụ huynh học sinh trong quá trình học tập, giảng dạy. Mang sứ mệnh tạo nên một thư viện tài liệu đầy đủ nhất, có ích nhất và hoàn toàn miễn phí. +) Các tài liệu theo chuyên đề +) Các đề thi của các trường THPT, THCS trên cả nước +) Các giáo án tiêu biểu của các thầy cô +) Các tin tức liên quan đến các kì thi chuyển cấp, thi đại học. +) Tra cứu điểm thi THPT quốc gia +) Tra cứu điểm thi vào lớp 10, thi chuyển cấp"

Bài Viết Liên Quan
Lý thuyết và phương pháp giải bài tập hàm số bậc hai lớp 10

Lý thuyết và phương pháp giải bài tập hàm số bậc hai lớp 10

12/05/2019
Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số lượng giác

Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số lượng giác

16/04/2019
Đề kiểm tra học kì 1 toán 11

Đề kiểm tra học kì 1 toán 11

27/03/2019
Chuyên Đề
  • Toán học
    • Toán 10
      • Hàm số lớp 10
    • Toán 11
    • Toán 12
  • Vật lý
    • Vật lý 10
    • Vật lý 11
    • Vật lý 12
    • Động học chất điểm
    • Động lực học chất điểm
  • Hóa học
    • Hóa lớp 10
    • Hóa lớp 11
    • Hóa lớp 12
  • Toán đại số
    • Khảo sát hàm số
    • Phương trình và hệ phương trình
    • ĐẠO HÀM
    • Hàm số bậc 3
    • Cực trị hàm số
    • Bất đẳng thức và bất phương trình
    • Dãy số – Cấp số cộng – cấp số nhân
    • Mệnh đề tập hợp
    • Giới hạn
    • Tổ hợp xác suất
  • Hình học
    • Cung và góc lượng giác – công thức lượng giác
    • Véc tơ
    • Tích vô hướng của hai vectơ và ứng dụng
    • Phép dời hình và phép đồng dạng trong mặt phẳng
    • Hình học không gian
    • Tọa độ trong mặt phẳng
  • Bài học toán có video
  • Tiếng anh

Tài Liệu Rẻ - Kho Tài Liệu Luyện Thi Đại Học Lớp 10 Miễn Phí

  • DMCA.com Protection Status

CƠ QUAN CHỦ QUẢN

Công Ty TNHH Giải Pháp TMĐT Đại Nguyễn

MST: 0314376934

Địa chỉ : 1446-1448, Đường 3/2, Phường 2, Quận 11, Thành phố Hồ Chí Minh.

Chịu trách nhiệm nội dung: Nguyễn Tấn Tài

VỀ TÀI LIỆU RẺ

Giới thiệu

Điều khoản chung

Chính sách bảo mật

Tuyển dụng

DÀNH CHO ĐỐI TÁC

Hotline : 0933.052.363

Email : info.dainguyengroup@gmail.com

HỖ TRỢ KHÁCH HÀNG

Đường dây nóng : 0933.052.363

Email tòa soạn : info.dainguyengroup@gmail.com

Phiên bản @copy; 2019. Bản quyền nội dung thuộc về Tài Liệu Rẻ

  • diva spa 056.3753648
  • chat fb thẩm mỹ diva Chat FB